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A bstract

The Air Force Institute of Technology(AFIT) supports on-going research in

application of robotic technology to enhance assembly tasks. As a testbed, AFIT

supports the ground-based aerial refueling project, with an emphasis on visual ser-

voing techniques and compliant motion control. This thesis focuses on compliant

motion control. Previous research developed the testing environment, which includes

a PUMA-560 industrial manipulator, and a half scale muck-up of an aerial refueling

system. This effort corrected and expanded the existing two degree of freedom(DOF)

compliant controller to three DOF. Three DOF compliance was demonstrated by in-

serting the refueling nozzle into the receiver port.Tuning, carried out by adjusting

desired model variables, characterized the impedance controller to function over a

wide range of desired dynamics. In addition, irregular force and velocity torque

profiles were attenuated through basic filtering schemes, providing an environment

in which friction compensation was tested. Finally, preliminary studies into faster

trajectories provide impetus for further study in the area of high speed compliant

assembly. The three DOF compliant controller combined with the visual servoing

techniques, provides a strong environment to test and evaluate robotic technologies

for constrained motion assembly tasks.

x



Three Degrees of Freedom

Compliant Motion Control

for Robotic Aircraft Refueling

IL Introduction

1.1 Motivation

One method to augment diminishing work force and protect humans from hostile

environments, is the application of robotics technology to specific tasks. Some tasks

currently being examined include robotic aircraft paint stripping, aircraft radiogra-

phy, and canopy polishing. These applications have shown the potential of robotics

to improve efficiency and reduce manpower. One of the challenges in using robotic

technology for industrial and military applications, is applying only technology that

has been proven for a specific scenario. This type of application requires directed

and specific research along with the understanding that robots are not capable of re-

placing all or even most of the human applications. Yet, there are many areas where

robotic technology can contribute significantly. A growing area of interest in the

robotic community is constrained motion applications. Constrained motion refers

to tasks performed while in contact with the environment. Humans perform most

of their tasks in the constrained mode. Present generation robots perform a limited

number of constrained tasks and many free space tasks. In the cases where robots

perform constrained tasks,i a high degree of task planning, robot training, and rigid

fixtu:ing has been implemented to accomplish the task. The reason for such efforts

is that control technology for such robots is generally based on individual joint high

giin proportional-derivative(PD) or proportional-integral-derivative(PID) feedback.

These controllers are extremely efficient at positioning a robot at a desired point
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with accuracy and repeatability. When the same controller is used for constrained

tasks catastrophic results can and usually do follow.

There are many reasons humans have the ability to perform complicated con-

strained tasks effortlessly. These reasons can be divided into three categories: Ability

to learn and recozniz', objects quickly; Local and global control certers; Compact

"%nd efficient sensor placement- Humans can sense 4 nd react to many thing3 like

temperature, texture, and forces. It is the ability to sense and react to forces that

make human manipulation so good with constraint tasks. A simple task like insert-

ing a peg into a hole is rather basic for humans, even in the dark. In such a task the

human will touch the environment and follow it until the hole is contacted. Once

initially contacted, the hand adjusts forces to allow the peg to engage and enter

the hole. This type of manipulation task is often referred to as compliant motion:

the ability to adjust to and surmount obstacles while performing the desired task

in a stable manner. The peg-in-the-hole task is representative of a general class of

assembly operations. As shown in this simple example, constrained tasks require the

ability to adjust to force inputs. Therefore, for robots to perform constrained tasks

in a semi- or unstructured environment, force centered control schemes combined

with force sensors must be evaluated and applied. Much of the current research in

robotics is involved in this area of compliart control.

The Air Force has some specific and unique areas of interest where a compliant

task oriented robot may prove useful. Specifically, part sorting, automated struc-

tural analysis, parts replacement, and refueling all provide potential candidates for

robotics. Each of these tasks can be dangerous and difficult for humans to perform in

a chemical or hazardous environment. A robot in the same environment, if appropri-

ately designed, would be unaffected. Currently, AFIT is evaluating aerial refueling

as a testbed for applying robotics. The AFIT robotic refueling scenario is divided

into two general areas: pattern recognition and compliant motion.

In the area of pattern recognition, research by Capt Shipman [40] and Capt
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Bennett [7] has provided the means to find and identify the standard aircraft refueling

port through digital imaging in various lighting environments. Once the port has

been identified, the second area of research, constrained motion, is applied to actually

insert the refueling nozzle into the receiver. Because nozzle insertion is analogous to

the peg-in-th,-Dhole task, sucressfully denionstraling this task provides insight into

use of roboic-, for constrahied Air Force applications.

1.92 Objective

AFIT studies in compliant motion focus on the feasibility of robotic on-ground

refueling using the aerial refueling port. This method provides a potential for faster

turn-around time for ground refueling. The purpose of this research effort is to

improve, clarify, and expand the compliant control applications previously performed

on a laboratory mock-up of the ground refueling scenario.

1.3 Problem Statement

Past Tesearch at AFMT has paved the way for a full three degree of freedom(DOF)

ground refueling scenario demonstration. Captain Duvall began the work by devel-

oping the half scale mock-up of the Universal Aerial Refueling Receptacle Slipway

Installation(UARRSI) port and nozzle, along with the tedious work of characterizing

the basic dynamics and control laws to be used [14]. Additionally, Duvall developed

the initial testbed which included computer programs integrated with a PUMA-560

serial link industrial robot, and he performed initial testing in two DOF. Captain

Milholen followed Duvall's efforts by refining computer code and improving the sys-

tem with the addition of a faster clock [34]. With these improvements Milholen was

able to demonstrate two DOF refueling tracking and insertion.

The goal of present AFIT studies in compliant motion is to demonstrate three

DOF compliant peg-in-the-hole capability by means of the ground refueling demon-

stration. This follow-on research effort is centered around expanding the previous
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experiments from two DOF capability into the more general and useful three DOF

case. At first glance, this by itself appears to be simply a minor adjustment to the

previous efforts. However, the mechanism for implementing the two DOF controller

contained some anomalies which needed to be characterized and corrected prior to

implementing the expanded controller. In addition, Milholen recommended further

improvements in friction compensation and second order model parameter selection.

The purpose of this effort is to characterize and correct anomalies in the two

DOF compliant controller, expand the cor trol to throe DOF, and provide better

performance through parameter selection or 'tuning' and friction compensation.

1.4 Method of Approach

The primary emphasis of this thesis was to prove and demonstrate three DOF

compliant motion. The central hurdle was characterizing and correcting the anoma-

lies from the two DOF implementation. This required a complete evaluation of the

theory and subsequent computer code used to create the two DOF controller. Each

of the contributing factors in the control method such as dynamics, kinematics, and

force sensor integration was evaluated for theoretical and applied accuracy. Follow-

ing this evaluation and the subsequent corrections, the computer code was upgraded

to the three DOF form. All the two-by-two matrix equations were expanded to

three-by-three arrays. Any simplifying assumptions made for the two DOF case

were removed. Effectively, the inertia, mass, damping, jacobian, inverse jacobian,

and jacobian transpose terms had to be recalculated then coded in their three DOF

form. Once coding was completed, the algorithm was exercised using the 'effective'

second order parameters which were derived from the two DOF case. Next, these

parameters were adjusted within certain limiting bounds to evaluate performance

changes due to this adjastment or 'tuuing'.

In addition to tuning the second order model parameters, filters on force and

velocity terms were applied to reduce the rough noise-type effects noticed duiig
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the tuning process. Next, the friction model used by Milholen was included with

the control law, and evaluated for effectiveness. Finally, some preliminary stud-

ies investigating the effect of increased trajectory speed on compliant motion were

accomplished.

1.5 Contributions

This thesis has provided the capability to perform three DOF compliant assembly-

type tasks, by demonstrating ground refueling on a UARRSI half scale mock-up.

With this capability, AFIT can better assess how to apply robotic technology to Air

Force issues. In addition to this significant advance, additional important contribu-

tions include:

* resolution of anomalies in the two DOF impedance control law implementation

* identification and resolution of improper force sensor coordinate frames

* characterization of impedance control robustness to wide variations in natural

frequency and damping terms

• illustration of impedance control capability at much greater velocities

These capabilities provide insight for on-going Air Force research into applying

robotics to support the demands of increased efficiency with a reduced work force.

1.6 Organization

This thesis is organized into six chapters. Chapter two provides a summary

of the salient literature regarding force control theory and applications, including

friction characteristics and effects. Chapter three identifies the test environment

hardware and software. Chapter four points out the anomAlies encountered and how

they were corrected. Chapter five discusses the test results. Finally, chapter six

concludes with summary comments and some recommendations for future research

efforts in this area.
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I. Literature Review

2.1 Motivation and Scope

Currently, a majority of robotic applications are centered around industrial-

type control methods which are tailored to a highly fixtured environment where the

manipulator remains free from the environment. Examples are spot welding and

painting In the few applications where the task is performed in contact with the

environment, the contact is highly structured [22]. This style of control has limited

robotics to a narrow range of applications. In order for robotics to have a more

universai place in commercial and industrial applications, they must be capable of

performing assembly type tasks.

Assembly is learned quickly and performed well by the human manipulator.

Goto et al describe the human dextrous capability used during assembly tasks to

consist of three phases [18]:

"* Rough positioning; done by sight,

"" Initial alignment; done by dexterity,

"" Control fine motions until complete; done by delicate touch.

For robots to perform assembly tasks well, they must be capable of performing in

each of the three categories of human dexterous motion, as seen in Figure 2.1.

Assembly requires the manipulator to come in contact with the environment

and continue to function in a controlled accurate manner. This type of interaction

with a traditional position controlled robot, produces instability. Hogan explains

that contact instability is one of the reasons for so little progress in the area of

robotic dextrous assembly [22].

With the increase emphasis on robotic assembly, new types of controllers have

emerged which can accommodate environmental contact. Most notable are the com-
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Figure 2.1. Three Functions for Assembly Tasks [18]

pliant controllers. Compliance is defined as the ability of a manipulator to adjust

to constraints [37]. Compliance can be achieved in many ways which are separated

into two general categories; active and passive [33]. Passive compliance deals with

the flexible nature of the manipulator or the end effector. In other words, passive

compliance can be designed into the physical structure of the manipulator or end

effector. Active compliance is achieved through programming or controller design.

Active compliance has sparked great interest because a single manipulator can be

made versatile by changing its compliant nature through software or programming

changes. In a passive compliance manipulator, changing to another task may require

a physical restructuring of the manipulator.

Like general industry, the Air Force is interested in robotic dextrous assembly

and related tasks as a means to increase efficiency and replace some tasks currently

performed by humans. The purpose of this literature review is to evaluate the current
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control schemes used in dextrous manipulation, and how they relate to on-going

AFIT research efforts. It will focus on active compliant methods, and approaches to

simplify non-linear effects such as friction and contact dynamics.

2.2 Compliant Motion Survey

Mason states that "facility in compliant motion tasks is a prerequisite to the use

of manipulators in a number of new applications, namely assembly" [33]. The need to

move away from the structured environment of the industrial robot is facilitated by

the use of compliant control [37]. Active compliance has been studied extensively due

to the flexibility it offers the user, i.e. the ability to program the same manipulator

to perform under various conditions. Active compliance can be achieved in various

ways. All of these depend on some form of force control. Whitney provides a detaijed

explanation of the various types of force control [46] . A summary is provided here.

Figure 2.2 shows a block diagram of stiffness control. This type of control

converts sensed forces into position adjustments. This conversion is done through a

stiffness matrix which models the total of the environment, manipulator, and sensor

stiffness. Essentially this type of control models robotic environment interaction as

a spring mechanism.

Damping control is similar to stiffness control, except in this case the sensed

forces are converted into velocity adjustments via a damping matrix. The physical

analogy for this interaction is modeling a dashpot or damper. See Figure 2.3 for the

block diagram of this type of control.

In case of explicit force control, the actual trajectory is described in terms of

desired force instead of positions or velocities. Forces are sensed actively and are

compared to a desired force. The difference between the two forces serves as an error

term to a linear force control law in this method. Figure 2.4 represents this type of

controller.
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Implicit force requires no force sensor. Displacements of the end effector and

environment are converted to forces through a conversion or stiffness matrix. Fig-

ure 2.5 shows that in reality implicit force control is another form of position control.

Finally, the individual joint gains are adjusted in order to obtain various manipulator

stiffnesses.

Within hybrid control, position and force are controlled separately under the

same control structure. First, the task is divided into constrained(contact) and

unconstrained axes. Force is controlled in the constrained axes, while position is

controlled in the unconstrained direction. This combination allows for high position

tracking in the free space axes while simultaneously accommodating constraints in

the other axes. The combination of these essentially independent controllers is made

through a 'selection matrix'. The selection matrix is a diagonal n by n matrix with

either one's or zero's on the diagonal. A '1' turns force control on and position

control off in the corresponding axis. A typical hybrid controller is represented in

Figure 2.6

Figure 2.7 portrays an impedance control scheme. Defined as a generalized sum-

mation of the stiffness and damping controllers, the impedance controller is similar

to the hybrid in the sense that it combines the nature of two types of controllers.

It differs in the way the combination is made. The key difference is that hybrid

control functions on an either/or basis. That is, either force or position is controlled

in a specific axis. Impedance control, on the other hand, regulates impedance which

is a combination of force, position, and velocity terms. Note, that both stiffness

and damping control can be considered subsets of impedance control. The major

difference is that in the full impedance controller, both desired position and velocity

trajectories are provided as inputs. In stiffness control only desired position is stated,

and in damping it3 desired velocity.

In summary, Hogan identifies one key issuc in dextrous manipulation as the

ability to deal with contact instabilities. His evaluation of the various types of force
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Figure 2.8. Stiffness Controlled Sprinkler Assembly [38]

control identifies that only impedance control integrates the effects of the combined or

dynamic relationship between force and motion. In other words, we "must recognize

that dynamic interactions are an integral part of the task" [221. Its important to note

that assembly tasks can be performed with any of the compliant control methods.

Salisbury [38] used a stiffness controller to demonstrate the assembly of a lawn

sprinkler assembly which is shown in Figure 2.8. However, in this example there

was a degree of fixturing required to provide gross relative alignments of the mating

parts.

The hybrid controller is structured in the sense that the selection matrix must

be generated. This generation requires evaluation of the task being performed to

determine which axes control force and position. The current focus on impedance

control derives from its flexibility. Impedance contiol does not require exact knowl-

edge of position or force to perform compliant tasks. In addition, this type of control
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can be used in freespace. Hogan claims "the distinguishing feature and advantage

of impedance control is that the same controller used to deal with free motions can

also be used with real mechanical interactions"[21]. Stated another way, impedance

control is the most human-like of the control schemes. Thus impedance control is

an ideal candidate to perform constrained assembly tasks. The remainder of tbi-

chapter will focus specifically on impedance contiol.

2.3 Impedance Control

2.3.1 Theory Hogan develops impedance control using bond graph formalisms.

Impedance and admittance are defined within that formalism as two types of phys-

ical system behavior. Impedances are described as elements "which accept flow

(e.g.,motion) inputs and yield effort (e.g.,force)." Admittances are the inverse, that

is, elements "which accept effort (e.g.,force) inputs and yields ficw (e.g.,motion)." A

physical example of impedance and admittance is a spring and mass, respectively.

Admittance and impedance are common concepts in linear electrical theory

[191. In that context the two concepts are essentially reciprocals of each other. How-

ever, in manipulation tasks they are generally non-linear, non reciprocal in nature.

Basically, Hogan's formalization determines that certain physical elements are in-

herently admittances or impedances. The foregoing descriptions are important in

impedance control development because the nature of interaction between elements

is determined by their inherent behavior. "The most important consequence of dy-

namic interaction between two physical systems is that one must compliment the

other"[19]. TLerefore, when two systems interact they must be compliments; if one

is an admittance the other must be an impedance. This is similar to the impedance

matching necessary between an amplifier and a speaker.

Masses are inherently admittances. Constrained robotic tasks create the situ-

ation in which two masses interface; the robot and the environment. As previously

stated, for physical systems to interact in a stable manner they must be compliments

2-9
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i.e., if one interacting element is an admittance, the other must be or perform like

an impedance. To achieve this, there are three options: cause the environment to

emulate an impedance; add a third impedance element at the interface or; cause the

manipulator to emulate an impedance. Generally speaking, the environment is not

easily modified to enmulate an impedance. This shifts the focus to one of the other

two options. Introducing a third interfacing element with impedance characteris-

tics is one motivation for passive compliant devices such as the Remote Center of

Compliance shown in Figure 2.9, or the soft sensor.

However, these methods have limited applications and performance regions [19j.

The final choice is to require the manipulator to emulate an impedance. Due to the

programmable nature of robctic controllers, this option is given the designation of

impedance controller [19].

The foundation for Hogan's approach to impedance control is to model the
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manipulator as a second order spring-mass-damper system. Such a modeling provides

all the essential elements necessary to emulate a wide range of impedance values. The

spring portion provides necessary position/tracking control. The damper provides

damping through velocity terms. Finally, the mass provides the essential capability

to modu!ate force terms [21].

2.3.2 Controller Implementation Hogan's analysis of impedance control re-

sulted in the following general control law [20]:

ra, = I(q)J-1 M-1 K[xo - L(q)] + S(q)

+I(q)J-'M-'B[vo - J4] + V(4)

-[J1 + i(q)J'M 1 ]Fm

-I(q)J-'G(q, 4) + C(q, j) (2.1)

The control law subsequently implemented by Duvall [14] was

Tract = I(q)J-1 M-1 K[xo - L(q)] + S(q)

-I(q)J-•i'BJ4 + V(4)

_[jT + I(q)J-1 M-1 ]Fit (2.2)

Finally, the control law implemented by Milholen [34] was

Trct = I(q)J-'M-1 K[xo - L(q)] + S(q)

+I(q)J-'M-1 B[vo - J4l] + V(4)

_[JT + I(q)J-1 M-1 ]F,,t (2.3)

where:

q is the measured joint position
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Sis the computed joint velocities

I is the manipulator inertia matrix

J` is the inverse jacobian matrix

M- 1 is the inverse desired mass matrix

K is the desired stiffness matrix

xo is the commanded position

L is the position from forward kinematics

S is the gravity compensation term

B is the desired damping matrix

vo is the commanded velocity

V is the friction compensation

jT is the jacobian transpose

Fit is the interface force between constraint and manipulator

G and C are coriolis and centripetal terms

Equations 2.1, 2.2 and 2.3 are divided into position dependent terms on the first

line, velocity dependent terms on the second line, and force related terms on the

third line. Duvall's implementation of Hogan's law assumes that the non-linear

terms, Coriolis and centripetal, are approximately zero. Duvall also assumed that

the commanded velocity was zero. Milholen's version of Equation 2.1 implements a

non-zero commanded velocity term. The control law implemented in this effort was

a three by thr-e matrix version of Equation 2.3.

..4 Issues in Impedance Control

The ability to perform constrained motion makes impedance control widely

studied. At the same time, constrained motion is a source of some difficilt problems.
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Stability is a concern whenever force sensors are included in a system [36, 47] and

the influence of unmodeled, non-linear effects such as friction and uther mechanical

joint interactions are difficult to model and compensate.

2.4.1 Stability Sharon and others [39] defined a technique termed physical

equivalence which originates from Hogan's discussion on impedance control. Phys-

ical equivalence states that a controlled physical system can be made equivalent to

another uncontrolled physical system [19]. Based on physical equivalence, Sharon et

al. propose that to obtain stability in a controlled physical system, merely require

that the target system emulate another known stable system. The example they use

is a stable spring-mass-damper configuration. Therefore, if a manipulator is modeled

and controlled to emulate a spring-mass-damper, it will be stable as well. This is the

same reasoning used by Hogan to develop the impedance control law. Hogan [19]

and others [3] discuss that the mass term is the key to determining contact stability.

Thus the spring and damper terms provide for minimum error tracking, while the

mass term governs contact stability.

2.4.t Non-Linear Effects Perhaps the limiting factor in the physical equiva-

lence method, is controlling the system such that it truly behaves like the desired

model. The realities of phenomena such as friction, gear backlash, and non-linear

dynamics may severely limit how well the controller causes the system to emulate

the desired behavior. Salisbury noted that coulomb friction in manipulator joints is

the most severe non-linearity involved in manipulation [38] . A separate discussion

of friction, including coulomb, follows the discussicns on backlash and dynamics.

2.4.2.1 Backlash Tustin described backlash as the effect caused while

"the displacement of one mechanical part produces equal displacemept in another

mechanical part, but only after taking up a definite clearance in the direction of

drive" [44]. Tustin further stated that backlash has little effect on a system when
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displacements are much greater than the backlash magnitude. However, when dis-

placements are not much larger than backlash magnitude, the result can be a phase

lag of 90 degrees or greater. This phase lag can contribute to instabilities [44]. When

the axis of rotation for a joint is perpendicular to the gravity field the backlash ef-

fects are dramatically reduced or eliminated [27]. This is demonstrated in the large

joints of the PUMA 560 manipulator. The axis of rotaticn for Joint one is co-linear

with the gravity field, while the axes of rotation for joints two and three are per-

pendicular to that field. Ahmad notes that backlash is generally prominent only in

joint one of the PUMA 560 [1]. One approach used to eliminate backlash effects is

to employ direct-drive methods. Another is to design anti-backlash mechanisms into

the manipulator. This type of anti-backlash technique is functional on the particular

PUMA used in this research.

2.4.2.2 Dynamics: Coriolis and Centripetal These dynamics are nonlin-

ear terms that are velocity and position cdependent. The coupling effects of Coriolis

and centripetal terms are more pronounced as velocity increases. To minimize de-

sign complexity, these terms are often either ignored or linearized. Leahy et. al

have shown that feedforward and other model-based dynamic compensation tech-

niques which include these terms can greatly improve tracking performance r28, 30].

In some cases, if velocity is small, the Coriolis and centripetal terms can be ignored

with good results. Duvall [14j and Milholen [34J use this approach in their evaluation

because constrained tasks are generally performed at slow speeds.

2.5 Friction

Friction is an element in nearly all mechanical systems [8, 13] , yet it is extremely

difficult to model owing to its discontinuous and non-linear nature [13, 4, 17, 43].

One of the complicated aspects of friction is that it is manifest at various levels,

from lubricant effects [5] to material deformations [5, 45]. Of all the various ways

to categorize frictional effects, the most common are coulomb, stiction, and viscous.
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Many research effortc have identified friction as the cause or a major contributor to

undesirable performance such as limit cycles and stick-slip motion [10, 43, 44, 5, 13].

The remainder of this section will evaluate the effects of the various categories of

friction on system performance.

2.5.1 Coulomb Friction is defined as a "dissipative force that appears at the

contact surface of two bodies in relative motion" [17]. This type of friction results

in a force that always opposes the direction of motion. Compensating for coulomb

friction can require up to 25 percent of total motor torque [17]. lstead of a singular

quantity, coulomb friction is a summary description of many complicated interactions

that occur at a lower level [17, 9, 45]. This is perhaps the central reason that

compensating for friction effects is difficult [10, 13]. Another contributing factor to

the complexity of coulomb friction is the discontinuity at zero velocity [43].

2.5.2 Static Friction Static friction deals with bodies at rest. When an exter-

nal force is applied to a body at rest, static friction wil! produce a nullifying counter

force in order to keep the body at rest. This force continues until the external force

reaches a threshold above which motion occurs. Similar to coulomb friction, static

is discontinuous at zero velocity [43]. Often, this type of friction is combined with

stiction [43, 13].

2.5.3 Stiction Stiction is defined as that portion of static friction force which

is greater than the magnitude of coulomb friction force [10, 8, 45]. Associated with

stiction is a concept called break-away. Break-away force is the point at which static

friction forces can no longer oppose the applied forces, allowing for object motion

[9, 43]

2.5.4 Viscous Friction Viscous friction is associated with the viscous nature

of lubricants used in machine parts [5]. Generally, this effect increases linearly with

increases in velocity.
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2.5.5 Effects of Friction Friction is present to some degree in all mechanical

systems. In evaluating the literature, a common theme emerges: Inexact friction

compensation can degrade performance. For example, overcompensation of coulomb

friction can lead to unstable limit cycles [10, 9]. Another result of inexact compensa-

tion is phase shifts that can actually amplify rather than reduce the negative effects

of friction [44, 43].

Predominance of one type of friction over another depends largely on the ve-

locity involved. Research shows that at low velocities, coulomb and static friction

dominate due to the non-linear, discontinuous nature in that range [5, 13, 43, 44, 16].

Currently, many of the force control tasks are accomplished in this low velocity range

[24, 18, 43, 34, 14]. As a result, there is a heavy emphasis on ways to reduce or elim-

inate coulomb and static friction effects.

2.6 Friction Compensation

There are various methods used to minimize or zero the effects of friction on

a system. The major contributions to compensation techniques are modeling and

adaptation. This section will review the current efforts using these tools to reduce

or eliminate friction influence.

For any given system, the level of performance will dictate the fidelity of the

model used to represent that system. Generally, " due to the complexity of friction

models in individual components, robotics researchers typically consider an aggregate

friction model for each robot joint" [13]. If implemented correctly, modeling serves

to linearize, reduce, or eliminate frictional effects. Feedforward terms such as those

in model-based control [31] are one example of how modeling can linearize non-

linear effects [8]. Obviously, the more accurate the model, the more nullifying the

compensation [45]. Unfortunately, exact models are not feasible nor available, due

to the complex nature of friction in physical systems. The most common form of

friction models are variants of an aggregate coulomb and stiction model. Some
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friction models are piece-wise linear combinations of coulomb and stiction, while

others include the effects of Tustin's [44] exponential decay to transition between

static and coulomb terms [8]. Still other models combine viscous friction with one

or more of the above mentioned models [34, 29, 13]. Figure 2.10 shows the model

used by Milholen [34].

One technique used to avoid overcompensation is to establish maximum values

needed to fully compensate for a particular term. Once the maximum is established,

the actual compensation term is set at a value less than the maximum. In this

way, unstable limit cycles resulting from coulomb overcompensation can be avoided

[29, 34]. Adaption techniques have been given more attention as methods to deal with

inexact modeling. Many researchers working on friction models have concluded that

adaptive techniques offer the greatest general method to reduce or nearly eliminate

the effects of friktion [8, 9, 10, 4, 16, 42]. Adaption techniques are treated only briefly

in this effort. They appear to be a logical next-step area for future research following

the successful implementation of the three DOF control scheme with a traditional

friction model.
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2.7 Summary

This chapter has reviewed the motivation for using compliant motion force con-

trol to develop robotic refueling. The use of impedance control by Duvall [14] and

Milholen [34] has shown that this type of force control is well suited for the peg-in-

the-hole assembly task represented by aircraft refueling. Refueling, and other slow

velocity assembly tasks introduce problems such as the dominance of frictional ef-

fects. Combining the inherently unstable aspect of force control with slow velocities,

creates the need for methods to counter these effects. The literature revealed that

modification of the mass term in the impedance controller can eliminate the unstable

force control. Friction effects can be reduced through appropriate modeling and/or

combined with the emerging adaptive approaches. The next chapter will examine

the implementation of these ideas in aircraft refueling.
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III. Tools and Implementation of Impedance Control

3.1 Overview

This effort is an expansion and clarification of the work done by Milholen [34].

In order to fully understand the results, its necessary to describe the test environment

used to create the data. Most of the equipment and theory used to create the three

degree of freedom impedance controlled robotic refueler remains unchanged from

that used by Duvall [14] and Milholen [34]. This chapter will describe the following

aspects of the test environment: hardware, system support software and, control

algorithm.

3.2 Hardware

The hardware used is separated into functional categories defined by the AFIT

Hierarchical Control System (AHCS) implemented by Duvall and enhanced by Mil-

holen. The central concept behind this system is to utilize hardware at levels best

suited for specific tasks. This system is divided into three levels: organizer, coordina-

tor, and hardware. Duvall [14:4-17] and Milholen [34:3-7] provide a more complete

description of the various levels. Figure 3.1 provides a graphical portrayal of the

AHCS, with a description to follow.

3.2.1 Organizer The organizer level facilitates user interface, handles com-

munication protocols with the coordinator, provides the capability to execute large

off-line calculations, and maintains safety functions for the system. Currently, AHCS

accesses one of two available VAXstation III computers for use at the organizer level.

3.2.2 Coordinator This level is the key portion of the AHCS. It provides the

link between the organizer and hardware levels. This includes communicating with

the manipulator and the force sensor. Milholen [34:3-7] states that this level is used
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Figure 3.1. Hierarchial Control System [34]. Robbie and Cyclop are both VAXS-
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to collect and partially process data from the manipulator and force sensor and

control communication tasks. The hardware at this level is the PUMA LSI-11/73

along with RAM, and various communication devices connected through a Q-bus.

3.2.3 Ezperimental Hardware The target of the AHCS operating hardware is

at this level. Here is where the manipulator and the force sensor electronics reside.

These provide the means to perform the desired experimentation.
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Figure 3.2. PUMA-560 Manipulator with DH Coordinate Frames [15]

3.2.3.1 Manipulator The manipulator used was a PUMA 560. This

robot is an industrial-type six degree of freedom vertically articulated manipu!a-

tor. It provides a good framework for evaluating various performance character-

istics. Figure 3.2 represents the PUMA 560 manipulator along with the Dcnavit-

Hartenburg(DH) coordinate frames. The manipulator derives three DOF from the

three heavy links. The remaining three DOF are contained in the roll-bend-roll wrist.

This research applied the compliant controller to the degrees of freedom associated

with the three heavy links of the PUMA. The wrist was commanded by a traditional

PD control law that forced the wrist to remain rigid.

3.2.3.2 Force Sensor The force sensor provides for six axis force mnoni-

toring. This particular force sensor was manufactured by JR' Incorporated. The

sensor package includes the transducer, support electronics, and power supply. Fig-
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ure 3.1 shows the integration of the sensor package into the test environment. The

transducer shown in Figure 3.3 consists of

two parallel plates connected by four octagonal 'bridges'. The plates are
bolted separately to the PUMA and the tool, so all load must pass through
the bridges. Foil strain gages are mounted on the sides of the octagons,
and resistance changes in the strain gauges are measured and interpreted
as forces or moments using a calibration matrix unique to each transducer
[14:4-8].

In figure 3.3, the bridges are represented by numbers 15, 16, 22, and 25. The

strain gages are the checkered patterns shown on the bridges. The transducer is

attached to the tool mounting plate on the PUMA joint six. The support electronics

are housed separately from any other hardware. The electronics are divided into two

pieces: the power supply, and active electronics. The active electronics provide the

sensor operating system. This operating system allows for calibration, and system
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diagnostic checks, and communication with other systems. For this research, all

real-time data transfer occurs via a DRV-11 parallel interface. Sensor calibrations

and bias removal are accounted for in the FARCADE program software.

3.2.3.3 Refueling Port To demonstrate refueling type tasks, a half-scale

model of a standard UARRSI was designed by Duvall and fabricated in the AFIT

model shop [14]. The mockup consists of two major parts: the slipway, and the

refueling boom nozzle. The slipway is an approximate representation of an actual

slipway. In a UARRSI slipway there is a smooth transition from the open slope to

the receiver. Duvall chose to make the fabrication easier by making the transition

a squared corner. This modification does not affect the ability to simulate compli-

ant refueling tasks. It does create a test environment which presents a more severe

obstacle to surmount. In actuality, this design provides a means to test compliance

techniques at extreme path discontinuities. Attached to the force sensor transducer,

the nozzle consists of three parts that are threaded together: the mounting plate,

the shaft, and the nozzle end. The nozzle portion is only representative of an actual

nozzle in the diametral dimensions. Capt Duvall essentially fabricated a 'soup can'

which threads onto the end of the shaft. As with the port, this simplifying change in

no way diminishes the ability to examine compliant tasks. This experiment made one

slight modification to Duvall's nozzle design. Duvall used a three portion threaded

shaft to facilitate various applied moments by changing the shaft length. This appli-

cation was never used however due to clearance problems between the PUMA and

the slipway The threaded shaft failed under heavy test loads. Therefore, a solid shaft

of like specifications was fabricated for this thesis.

3.3 System Support Software

The software used in this thesis is based on the previously mentioned hierar-

chical concepts. At the AFIT robotics lab, a general test environment is used to

evaluate various control laws. To facilitate this general nature, a software environ-
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ment was created by previous researchers. This environment is termed the AFIT

Robotic Control Algorithm Development Environment (ARCADE) [32, 26, 14, 34].

ARCADE is the software side to the AHCS. Here programming languages are used

where most appropriate, i. e. the high level language FORTRAN is used at the or-

ganizer level on the VAXstations. At the coordinator level, PDP assembly language

is used for speed and compactness. ARCADE also provides ability to access various

control schemes and apply them to different manipulators. FARCADE, a deriva-

tive ARCADE, was created by Capt Duvall [14] and subsequently modified by Capt

Milholen [34]. The 'F' represents 'force'.

Capt Duvall had limited computer resources available and was restricted to

implement extensive assembly language code at the coordinator level [14], With

more abundant computer resources, Capt Milholen reorganized much of the task-

ings. Much of the assembly code at the coordinator level was re-hosted in VMS

FORTRAN and applied at the organizer level. Milholen's effort allowed for only es-

sential functions at the coordinator, arid provided a better user interface by moving

much of the tasks to the organizer. No structural charges were made to Milholen's

FARCADE during this effort.

3.3.1 FORTRAN Support There are many support sub-programs called by

FARCADE. They vary from loading data files containing PUMA and force sensor

constants, to creating actual cartesian trajectory files, and data handling options

like graphing and storage.

3.3.2 Assembly Language Support There are a number of PDP-11 assembly

code programs that support the FARCADE environment. The most important one

is the Servo Data Concentrator ANGLES and FORCE (SDCAAF). It provides the

vital link between the PUMA and the user by collecting and shuttling joint angles,

motor currents, and forces from the force sensor between the hardware and organizer

level. Fhe assembly sub-program that actually interfaces with the force sensor is
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called GETRFV. Some of the key FORTRAN sub-programs will be discussed in the

Section 3.5.

3.4 Control Algorithm Development

The control law use in FARCADE is based on Hogan's impedance control law.

As stated in chapter two, impedance control causes the manipulator to behave like

an impedance. This impedance controller models the manipulator as a spring-mass-

damper. The exact values are arbitrary so long as certain ratios of these terms are

maintained. This modeling is referred to as the "desired dynamics" model by Hogan

[19, 34]. The development of this control law is presented next.

3.4.1 Impedance Controller This subsection presents a condensed version of

the development done by Duvall [14:p 3-6, appendix A] and modified by Milholen

[34:p 3-16]. Figure 3.4 displays a block diagram of the controller described below.

Beginning with the desired dynamics concept, the mathematical representation

is found in Equation 3.1 where 'x' and 'v' represent cartesian position and velocity

respectively, and the subscripts 'a' and 'd' represent actual and desired values.

S= K(Xd - Xa) + B(vd - va) + M (3.1)

This is a matrix equation which can be implemented up the numb-r of DOF of the

manipulator involved; six for the PUMA. Because the M, B, and K matrices are each

diagonal, these equations can be analyze as decoupled linear second order equations.

Duvall and Milholen implemented only two DOF involving joints two and three.

These equate to the world x-z coordinate plane. One of the major contributions

of this thesis was to upgrade the controller to three DOF, which is general enough

to demonstrate robotic refueling for a wide class of applications. Noting that the

difference terms in Equation 3.1 are simply error terms of the form of Equation 3.2
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Applying a Laplace transform to Equation 3.3 we obtain the the following transfer

function:
E(s) 1(3.4)

Fi(S) S2 +~

Equating the characteristic polynomial from Equation 3.4 with the characteristic

equation for a second order system,

s2 2 2(ws + W2 S + BS (3.5)

We obtain the following relationships:

2Cw ~B

2 K
Wn= K (3.6)

From pole placement techniques [11] the two closed-loop poles are the following:

S= -- -( Wn ==jwnv/1- (3.7)

1 2

where underbrace '1' represents a and underbrace '2' represents wd. The exact

values for B, K, and M are specified such that the relationships to C, wd, and w, are

maintained. Like Duvall [14] and Milholen [34], C was initially chosen to be greater

than one to facilitate over-damping. The choice for w, is determined based on other

techniques that will be discussed in Chapter Four. By specifying ( and w, the bounds

are set for the choices of desired mass (M), damping (D), and spring constant or gain

(K). Within these bounds the specific values can be adjusted to meet the particular

contact scenario encountered. This provides a simple method for tuning based on

different impedance/admittance values encountered at the manipulator interface.

To fully implement the control law it's necessary to include other terms that

allow for complete controller function in cartesian space. These terms account for

3-9



the physical nature of aily manipulator: inertia due to the mass, gravity and friction,

and the kinematic relationship of all points in the manipulator. The following sub-

sections detail these items.

3.4.2 Dynamics Reference [15:p 84-98] prcvides an in-depth discussion of dy-

namic terms. A brief summary of that work is provided here. By applying energy

equations of the Lagrange..Euler formulation to a robot manipulator, the generic

equation of motion reduces to the matrix equation [15]:

r(t) = I (q(t))4(t) + H (q(t), 4(t)) + C (q(t)) (3.8)

The term r represents the joint torque vector. The terms q, 4, and 4j represent the

joint angles, velocities, and accelerations vectors respectively. The inertia matrix

is represented by I. Coriolis and centrifugal terms are represented by H. C is the

matrix of gravity related terms. As stated in Chapter 2, the Coriolis and centrifugal

t,erms are assumed negligible for this case, and are not considered further.

3.4.2.1 Inertia Tensor The inertia tensor represents the mass and re-

flected mass effects on e~.ch actuator. Because mass is representative of acceleration

terms, the inertia tensor represents the interrelated accelerations of one link on the

others [15:p 93-96]. For the full six DOF manipulator, the inertia tensor is six-by-

six. However, impedance control will be only applied to the first three joints for

this thesis. Hence, the inertia tensor of concern will be the upper left three-by-three
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sub-tensor identified in Equation 3.9.

111 112 113 114 115 16

121 122 123 124 125 126

131 132 133 134 135 136 (3.9)

141 142 143 144 145 146

151 152 153 154 155 156

161 162 163 164 165 166

Inertia tensor values are calculated by combining the Denavit-Hartenburg parameters

for the PUMA 560 [15] with the symbolic inertia equations worked out by Tarn [41].

Duvall used MACSYMA computer code [14:p 3-18] to reduce the equations prior

to implementing them in computer code. For this effort, a similar reduction was

performed using Mathematica [48]. Tarn calculated the inertia terms for joints one

through three directly, and included the effects of joints four through six as a load

on joint three. This method is acceptable because joints four through six are being

commanded to remain at zero angle by a separate PD control loop.

3.4.3 Kinematics Kinematics is the study of position and motion of an object

relative to some reference. Kinematics does not deal with the effects of forces. In a

robotic manipulator, the task generally involves locating and moving an object from

some point to another in the workspace. A majority of manipulators are controlled

at the primitive level in joint space. However, a majority of tasks are best described

and controlled in a cartesian space. The challenge with manipulator kinematics is to

understand what joint space motions produce a desired cartesian motion, or which

cartesian motions produce the certain joint motion.

The fundamental aspect of kinematics is identifying the different coordinate

axes necessary to translate end effector values into the reference frame coordinates.

For an 'n' DOF manipulator there can be 'n' different coordinate frames. To provide
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a systematic and standardized way of assigning coordinate frames to a manipulator,

Denavit and Hartenburg [12, 15] developed a method which is simple and straight

forward. On this theme Fu, Gonzalez, and Lee [15] describe a composite of all

the separate frame-to-frame rotation matrices as the homogenous transformation or

hand matrix. The hand matrix describes the position and orientation of the end

effector with respect to the reference frame given specified joint angles and the DH

link parameters. This four-by-four matrix is

n. s. a. p.

n ,, s5 a . p y (3.10)

n s sz az Pz

0 0 0 1

where n, s, and a are the normal, sliding and approach vectors which are the con-

ventions established to identify the position and orientation of the end-effector [15].

The nasp coordinate frame attached to an end effector is shown in Figure 3.5. The

hand matrix is used to compute reference (world) frame forces and moments, from

nsap frame forces and moments.

There are two categories of kinematic concern for robot manipulators [15:pl2]:

direct or forward, and inverse or back. Direct kinematics determines the position

and orientation of the manipulator end-effector given the joint positions and some

characteristic geometric parameters for the manipulator. Inverse kinematics is de-

termining the necessary joint positions to obtain a specified cartesian position and

orientation. For this thesis the bulk of conversions will employ direct kinematic

schemes in order to convert force sensor frame data into the reference world frame

coordinates. Currently, inverse dynamics is used to gather position data for graph-

ing. Closely related to position conversions, is the need to determine force-to-torque

and cartesian-to-joint space velocities. These conversions are accomplished through

the Jacobian and inverse Jacobian matrices.
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Figure 3.5. Representation of the NSAP Direction [15]

3.4.3.1 Jacobian The Jacobian is described in detail in several references

[15, 6, 2,5] and is based on the relationship between joint and cartesian velocities.

i* = J (3.11)

Derivation of the Jacobian was calculated by taking the derivative of the end effector

position vector. This position vector identifies the location of the end-effector origin

and is identified in the above hand matrix by the fourth column, the pi values.

Putting the time derivative of the position vector with respect to each of the joint
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angles in matrix form produces the three by three Jacobian matrix used in this thesis.

dOI dO2  dO4

J(q) = dPi dPi dPx (3.12)

dpl d82  d03
dOl d82  d63 J

Thus, when the joint angles and velocities are known, the cartesian velocities can be

found from Equations 3.12 and 3.11. The inverse Jacobian allows the determination

of joint velocities if joint positions and cartesian velocity are known.

4 = - (3.13)

The Jacobian transpose is used to relate cartesian forces and moments to joint

space torques. As noted earlier, the PUMA is controlled at the primitive level by

commanding torques to each joint. These torques are then converted to servo motor

currents. The trail to converting force sensor values to joint torques begins with the

hand matrix which converts forces from sensor frame to world frame forces. These

.tre next converted to joint torques via the Jacobian transpose:

T = .T F (3.14)

Where T is joint torque vector, JT is the Jacobian transpose, and F is the cartesian

force vector.

3.5 FORTRAN Implementation of the Control Law

The control law was coded in to VMS FORTRAN using the kinematic rela-

tionships and the Jacobian described above, along with the diagonal M, B, and K

matrices. A complete listing of selected FORTRAN programs can be found in [2].
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3.5.1 Fcedforward Gravity For a serial manipulator like the PUMA, the axis

of rotation for the two heavy links is perpendicular to the gravity field making

these links greatly influenced by gravity. Gravity compensation is accomplished by

including a modeled gravity effect as a feedforward term in the compliant controller.

Again, the work of Tarn served as a basis for calculations. With its axis co-linear

with the gravity field, joint one gravity effects are neglected [41]:

C1  =0.0

C2 = C3 -ga 2 m 3cos(q2)) + gm 2 [y2sin(q2 ) - (x 2 + a2)cos(q2)]

C3 = -gm3[(x 3 + a3)cos(q 2 + q3) - z3sin(q2 + q3)] (3.15)

where:

g is gravity = 9.8 meters/sec 2

a2, a3 are the Denavit-Hartenburg parameters for links 2 and 3

m 2,m3 are the masses for links 2 and 3

X3 , z3 , Y2 are the first moments of those axes [14:p3-20]

S.5.2 Feedforward Friction The complicated nature of friction effects and

compensation was described in the previous chapter. A description of the type of

compensation used in the FARCADE algorithm is now provided. The friction model

used for this research was identical to that used by Milholen [34]. Summarizing,

Milholen's choice was based on previous studies that identified the complexity of

accurate compensation through non-adaptive modeling. That discussion identified

two critical elements of a friction compensation scheme for this effort:

Generality Ability to address the most dominant friction effects at the relatively

slow task speeds encountered in the compliant refueling environtnent. These
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effects were identified by Milholen as stiction(static), coulomb, and viscous fric-

tions [34].

Simplicity The complexity of implementation must be limited. The total compu-

tational time required for friction plus the remaining control law must allow for

computations at or below the desired operating frequency.

With these restrictions Milholen used the composite stiction, coulomb, viscous model

described by Equation 3.16 and depicted in Figure 2.10.

{7rsgn(4) (141) > d (3.16)

Tcsgn(rm) ([41) < d

where:

,r, is the compensation torque (90 % of experimentally determined value for

stiction)

sgn(.) is the function returning the sign of its argument

4 is the joint velocity in rad/sec

T, is the torque supplied to the motor

d is a velocity threshold also determined experimentally

The choice of the switching threshold parameter d was determined by experimenta-

tion to be 0.01 [34, 31]. Choosing the sign of Tm for values less than the threshold is

used from the assumption that static friction has overcome motion in this realm.

3.5.3 Non-Impeahnce Control Implementation of impedance control was ap-

plied to three of the six joints of the PUMA manipulator. Joints four through six

were controlled by a classical proportional derivative control scheme implemented in

joint space. The large assumption of this impedance controller was that the wrist

joints were essentially a solid extension of joint three. By commanding the desired
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joint positions and velocities to be zero, a form of electronic brake was applied to

these joints. The resulting PD control law reduces to

-" q- KX,,q (3.17)

Values of Kp and K& were chosen by Milholen and were not changed here. Du-

vall [14:3-34] and Milholen [34:3-231 noted that by changing the gains on the PD

controlled joints, varying degrees of electronic passive complirnce can be achieved.

They applied this concept to provide a small degree qf compliance in the cartesian

'y' plane by implementing softer gains on joint one.

3.5.4 FARCADE FARCADE is written in VMS FORTRAN and contains all

the communication and subroutine calls necessary to operate the PUMA manipulator

in impedance mode. It also calls the manipulator and force sensor calibration rou-

tines. The impedance controller is actually a sub-routine within FARCADE ca,:led

MBFCRT. The following sub-subsection titles represent a FARCADE sub-routine

name.

3.5.4.1 MBFC-RT This is where the Jacobians, inertia, M, B, K, grav-

ity, and friction are all combined to create the total torque required for driving the

joint motors. MBFC.RT is called each time step calculating new values. These

torque values are sent to the coordinator level and then to the PUMA servos. The

total torque values are divided into four categories:

Force Torques due to sensed interface forces. Final value obtained by the following

combination of the these turms: _[jT + I J-1 M-'] F•,"

Position Torques due to cartesian position errors. Computed from these term:
I J-1 M-' K[xo - L(q)] + S(q).

Velocity Velocity related torques calculated from: +I J-1 M-1 B[vo - J4] + V(4).
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Feed-forward Gravity and friction. The gravity term is generally included with the

position dependent terms as shown by S(q) above. Friction torque is calculated

separately using as a basis Equation 3.16.

3.5.4.2 CARTFOR Employs a two-step process to convert sensed forces

to world frame values. First, force sensor calibration bias is removed. Next, these

forces are converted to the world frame using the hand matrix. Once converted,

these forces are used in MBFCRT to create the portion of total torque related to

interface forces. This routine is also executed each sample period.

3.5.-4.3 KIN Calculates the hand matrix each sample period. Once cal-

culated, the values are combined, in MBFC_RT, with forces from CARTFOR. KIN

is also used to establish the starting position in the trajectory.

3.6 Summary

This chapter has defined the test environment used in this tbesis. The envi-

ronment consists of computers, a PUMA manipulator, a force sensor, the refueling

mock-up, and the software operate and support the environment. The following

chapter will set the stage for the actual research performed, by discussing some

issues that needed to be resolved prior to full-scale experimentation.
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IV. Anomalies

4.1 Overview

During the FORTRAN coding and subsequent 'shakedown' testing of the three

DOF impedance control law, three anomalies in the previous two DOF effort were

identified. This chapter will explain the anomalies, and the steps taken to correct

them.

4.2 Two DOF Impedance Controller

The complex nature of implementing impedance control provides an atmosphere

of mistakes and mis-cues. Assuming that all parameters are correct, proceeding from

a two DOF impedance controller to a three DOF controller is simply done by expand-

ing the two-by-two matrix form of Equation 2.3. It was during this implementation

process, that errors in the previous two DOF FORTRAN code were discovered. The

following subsections discuss the data file read error, and the run-time constants.

4.2.1 Data File Read Error One of the FARCADE subroutines, IMPCONST,

reads in data that define the M and B values. These are part of the 'desired' coeffi-

cients that make up the second order spring-mass-damper model used to characterize

the manipulator impedance. Milholen's implementation of this read routine inverts

the order of these terms, effe -tively making the desired mass term read as the desired

damping term and visa versa. Once this read is done the same subroutine creates

the constants which are later used in the subroutine MBFCRT to calculate actual

joint torques. All impedance control law calculations done in MBFCRT rely on the

off-line constants created by IMPCONST.

From Equation 2.3, it is evident that the mass matrix used in computing the

control law is actually applied in its inverted form; thus in the FORTRAN code M is

actually M 1 . This mass term is utilized in the force, position, and velocity torque
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terms. Any error in mass terms will affect each of these torque terms. The damping

term B is used in its un-inverted form, and is used to calculate only the velocity

torques.

4.2.2 Run-Time Constants The subroutine, MBFC..RT, is the heart of the

impedance calculations. The two DOF version contained constants which were used

in the position and velocity torque calculations. These constants have no basis in

the theory supporting this control law. The following is a comparison of what the

theory states versus what was implemented in the two DOF code:

Theory

PositionTorque = I J 1 M-1 K[xo - L(q)] (4.1)

VelocityTorque = I J-1 M-1 B[vo - J4] (4.2)

Two DOF FORTRAN Implementation

PositionTorque = 100(I J-1 M-1 Kfxo - L(q)])) (4.3)

VelocityTorque = I ,-' M` B[vo- '100 J4] (4.4)

The constant 100 identified by the overbrace is the unsupported term. In a

phone conversation with Capt Milholen [35], this constant was discussed. Evidently,

the constant value wa& generated as a result of a trial and error attempt to make the

two DOF impedance controller function. After encoding and performing individual

subroutine checks, Milholen found that the two DOF controller produced no motion.

After several attempts, the above constants provided manipulator motion. The

underlying cause for the need to use these constants originates from the IMPCONST

data read error.

4.2.3 Imynlications With these two changes to the two DOF approach, the

three DOF implementation was accomplished. Initially all values for desired mass,
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damping, and spring constants duplicated the values used by Milholen [34:Table 4.4].

These values are found in Table 4.1.

Table 4.1. Two DOF Assumed Parameters [34:4-13)

Test Trajectory C w, M B K
T5 Refueling 1.2 7.0 2.041 34.29 =100.01

Test runs of the three DOF controller produced extreme instability in the ma-

nipulator. Following several attempts to identify the unstable behavior, a study was

done to characterize how the two DOF implementation errors changed the second

order system model. A summary of the study results follows.

Assuming the desired values as identified by Table 4.1, and evaluating Equa-

tion 3.6 based on the transposed read, the following parameters result:

K - w2_ o 2.9163
M - - 34.29

(4.5)
B 2(w,- 2.041 0.0595
M 2- w -- 34.29

Table 4.2 compares the values for K and B based on theory, with those shown in

Equation 4.5.

Table 4.2. Comparison: Theory vs Iwo DOF Imhplementation

Source W, M B K
Theory 1.2 7.0 2.041 34.29 100.0
2 DOF 0.0174 0.0595 34.29 2.041 100.0

!t is clear frcn this cormparison that the values implemented in the two DOF

controller varied drastically from what the second order model predicts. These were

the values that were being implemented in the control law that Capt Milholen at-

tempted to run prior to add:'g the constants. From Equations 4.3 and 4.4 an
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'effective' value can be obtained by the following:

100K = --- = 1000-2- = 291.63

M n 34.29

(4.6)

100L = 2(w, = 10012"11 = 5.950100 = w34.29 -

Note that the -L term assumes that v' is small in comparison to 100J4. With the

values obtained from these 'effective' spring-mass-damper terms, a final comparison

of terms in made in Table 4.3.

Table 4.3. Comparison: Theory, Two DOF Implementation and Effective

Source W, M B K a
Theory 1.2 7.0 2.041 34.29 100 -8.400
2 DOF 0.0174 1.7078 34.29 L 2.041 100 - 0.029

Effective 0.1740 i7.078 34.29 1204.02 10000 -2.973

Although the choice M, B, and K are arbitrary, they must satisfy the condi-

tions for stability, desired damping, and natural frequency. There is an additional

restriction imposed to avoid pole warping which occurs when using a digital system

to approximate a continuous one [23, 14, 34]. Equation 4.7 describes this condition.

-0.1o > T0

For the current configuration, the sample rate To is 5.4 mi~llieconds. Thus, the

additional restriction is found in Equation 4.8.

-0.1 -01
o > E- 5.4X=103 -- 18.52 rad/sec (4.8)

Remembering that o r -( w,,, and using the eifective values calculated above,

the two DOF freedom control law implementation met this criteria, as shown in
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Equation 4.9.

""7T (4.9)
-- (0.1742) (17.078) " -2.97 Ž -- 18.52 rad/sec

4, 3 Force Errors

During the initial testing of the three DOF controller, it became evident that

some of the torque values were incorrect in direction. To isolate the error required

several steps. First, to verify the translation of forces from the tool frame to the

world frame. Second, assure that the conversion from world forces to joint torques

was correct.

4.0.1 Force Conversions: Tool Frame to World Frame The first area exam-

ined was the n.ap kinematic transformation raatrix. To test for this type of error,

the calculations the transformation matrix were first re-checked. Next, a simula-

ticii program was created using the pertinent FARCADE software subroutines and

running various arm configurations and fictitious input forces. The goal here was

to check for appropriate magnitudes and signs on the resultant forces. During this

exercise it was discovered that the force sensor coordinate frame was in error. Fol-

lowing the same convention used in the previous research, it was assumed that the

force sensor and world coordinate frames were aligned wlcn the PUMA was in the

(00, 90°, -90') position. However, in actuality the coordinate frames were aligned

in the z and x axes, but were 1800 out of phase in the y axis. This situation went

undetected by previous researchers because only the x and z force values were used

by the two DOF control law. Once discovered, this error was corrected in the appro-

priate places within the computer code. For c'--to-torque checks were done to assure

no other conversion errors existed.
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4.3.2 Force to Torque C-,onversion The final area to check for the force related

errors was in the ,conversion from forces to torques. This conversion involves the

rna~s matrix, jacobian transpose, jacobian inverse, and the inertia matrix. Each of

these terms was rechecked for theoretical accuracy. None of these terms identified

any inaccuracies.

4.4 Joint One Data Corruption

As initial three DOF testing continued, an error in the cartesian 'x' position

data was encountered. 'The same error was e~vident in the joint ,mne data plots. It

was manifrest by position spikes as the manipulator traversed the desired trajectory.

As the manipulator tra'.eled down the slipway sidewall, the position plots for joints

two and three reflected a solid connected line representing actual position. Joi.nt one

dat•a, showed spikes that started at the zero positiorn and jumped to some non-zero

value. Because the manipulator was physically restrained by the slipway sidewall

from returning to 'zero, it was determined there was some error in the data repre-

senting joint one position. When the non-zero endpoints of t•he position spikes were

connected with line segments, the resulting curve represented the actual joint posi-

tion. This suggested that the joint one data had correct values initially, yet at some

point most of that data was being corrupted with zeros. Further investigation of the

issue determined that the Assembly level code was somewhere causing the drop-out

or corruption of the data. In order to continue research, a temporary fix was imnple-

mented. This simple fix reads the values for joint one angles comparing them with

the previous values. If the current walue is smaller than the previous, the pzrevious

value is retained. This is possible to implement beca~use the constraint surface never

changes between positive and negative slope on the same run. Figure 4.1 shows the

original spiky data with the continuous line resulting from the fix, superimposed on

the spikes.
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Joint One: Effective Parameters
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Figure 4.1. Constrained: Joint One Velocity Comparisons
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4.5 Summary

This chapter identified the anomalies found in the previous two DOF impedance

control implementation. In conjunction, a brief chronology of the changes made to

produce a functional two DOF controller was reviewed. The resulting data, found in

Table 4.3, summarizes the conditions actually functioning in the two DOF version

of impedance control. Next, error in the force related torques required a review of

the governing equations used. As a part of that review, the force sensor coordinate

frame error was uncovered. Finally, the joint one data corruption issue was revealed,

and a fix sufficient to continue testing was implemented. A complete fix will be

required for future studies. The following chapter begins evaluating the three DOF

impedance controller using the conditions of Table 4.3 as a starting point.
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V. Results and Evaluation

5.1 Overview

The previous chapters described the tools needed to create, test and verify a

three DOF impedance controller. This chapter presents the details of implement-

ing the three DOF compliant control law. Testing began by applying the effective

impedance values used on the two DOF controller, to the current control scheme

for three DOF. Three DOF compliance was demonstrated during this phase. Using

the two DOF initial parameters as a spring-board, the values for desired mass(M),

damping(B), and stiffness(K) in the impedance controller were adjusted in a 'tun-

ing' process to obtain improved performance. Force and velocity filters were applied

in order to smooth out the torque profiles. With smoother torque profiles, friction

compensation was evaluated.

5.2 Initial Conditions

5.2.1 Trajectory Once the theory was coded in FORTRAN, the control

law was exercised. As a reference point for comparison, the 'effective' values

for the previous two DOF control law were applied to the three DOF control

law. All tests were performed with the refueling trajectory used by Milholen

[34] which is depicted in Figure 5.1. The solid outline represents a side view

of the refueling apparatus. The refueling trajectory starts at the world xyz po-

sition (-0.800m, O.149m, -O.201m) then moves in the -z direction to the point

(-0.800m,O.149m, -- O.325m). From that point, movement is in the -x direction

with termination at (-1.060m, 0.149m, -0.325m). This particular trajectory only

requires commanded movement in joints two and three to meet the xz position re-

quirements. Joint one is commanded to remain stationary. Initially this appears to

be a limiting case which doesn't exercise all aspects of the three DOF controller.

However, because the refueling table is adjustable, the slipway can be set such that
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Figure 5.1. Refueling Trajectory [34:4-13]

joint one is deflected from the zero commanded position. The ability to position the

physical constraint provides a mechanism to evaluate various degrees of compliant

motion. To avoid equipment damage from unstable behavior, each set of conditions

was initially performed in free space prior to contact with the refueling table.

5.2.2 Fixture Positioning Due to variations in PUMA calibration, it was not

possible to place the refueling table in the same location each time. At times cal-

ibration variations would place the manipulator much lower in the z axis direction

than others. To accommodate this, the table was adjusted in the x axis direction.

Though not as severe, calibration positioning was also inconsistent in the y axis.

Therefore, placement of the refueling table in the x and y axis directions was not

identical for each test case.

5.2.3 Data Plots All of the data plots presented in this chapter were created

by sampling every fifth point out of the original data files. The original data files

contained 5555 data points. It was found that plotting out all of the raw points

created an extremely difficult plot to analyze. The plots shown in this chapter,

contain 1111 data points. A careful comparison of the full data plot with the reduced

size revealed no significant degradation in the information portrayed.
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5.3 Three DOF Compliance

5.3.1 Verification The first formal phase of testing used the 'effective' param-

eters found in Table 4.3. Figure 5.2 provides insight into the tracking capability of

this parameter set. As expected from Milholen's results, this configuration tracks

the desired trajectory quite well. The z axis plot reveals the characteristic stair-step

motion which is indicative of stiction. The presence of stiction in this case is possi-

ble since the test was made with no friction compensation. Friction compensation is

addressed later in the chapter.

The next step was to verify that the three DOF controller could perform two

dimensional constrained compliant motion. This task was accomplished by running

the trajectory with the refueling platform aligned in the XZ plane. Figure 5.3 rep-

resents the torque profile resulting from the two DOF insertion. As expected, the

position and total commanded torque were nearly identical for joint one. For this

two DOF case, joint one, which corresponds to the y axis direction, did not encounter

an obstacle. Joints two and three encountered the slipway causing force and position

error in these directions. Figure 5.3 displays the resulting torque profiles quite well.

The small torque on joint one is due to irregularity in the slipway surface com-

bined with slight sensor variations, there was some sensed force in that direction.

The data for joints two and three show that as the position torque varies, the force

torque responds in the reverse. This is the desirable nature of impedance control.

The constant interplay between the position and force torques is what allows com-

pliance to work. Once the two DOF capability was established, all three degrees of

freedom were exel c sed.

5.3.2 Three DOF Compliance This test was set up by placing the refueling

platform offset in the plus or minus y direction.Initially, the the nozzle remained

parallel to the slipway sidewall. Eventually, the slanted sidewall created an angle

whose effect was to increase the position error, sinillar to placing a wedge aleng the
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trajectory, as the manipulator continued in the -x direction.The resultant torque

profile is shown in Figure 5.4. The joint one plot clearly shows the mirror nature of

force and position torque. This effect is also evident in the other two joint torques.

In addition to verifying compliance in each of the three degrees of freedom,

Figure 5.4 reveals some other characteristics. First, the data in the plots for joints

two and three is especially rough. The force torques are oscillating at a relatively high

frequency. This was the mot; vation for force filtering which is discussed in a latter

section. Additionally, the jcint one plot shows that even though the force torque

counters the increase in postion torque, it only partially nullifies the increase. This

means that there was a ne,' inc ease in total torque in the direction of the sidewall.

The physical evidence of this let force was seen by observing slight flexure in the

refueling fixture support struc sure. No damage was done because the support frame

is not extrern.ly rigid. _1 his ret force issue is discussed in the tuning section.

5.4 'Tuning'

The term tu. ing here refers to improving performance through variation of

the impedance coittroller second order parameters M, B, and K. Chipter Three

described the relation between these parameters and the damping ratio and natu-

ial frequency. '1iis section will present the tuning results by actually varying the

damping ratio, C, the natural frequency, w,, and mass.

5.4.1 liminping Ratio Although the above control law verified compliance in

all three direcLions, the desired parameters created a small damping ratio, Clas-

sic control th•ory suggests that such small values for damping ratio allow for the

possibility of overshoot and longer periods of oscillation, which are not desired i1

impedance control. Figure 5.5 represents the constrained position trajectory plot

that results from three different damping rat,:s. This figure clearly shows that thele

is little change in trajectory tracking performance between C = 0.174 and 1 1.4.
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Figure 5.6, illustrates the torques corresponding to the C = 1.4 trajectory plot of

Figure 5.5. Comparing Figures 5.5 and 5.6 reveals only a slight variation in the

torque profiles for the • = 0.174 and the C = 1.40 case. The one noticeable feature

is the noisier force torques for higher damping ratios.

So far, the only benefit gained from increasing the damping ratio is that the

system shouid theoretically be more stable, not allowing for overshoots and many

oscillations. From visual observation the performances are identical. In addition,

careful examination of Figure 5.6 reveals that there is an additional amount of higher

frequency torque and some spikes that do not correspond to the force terms. Evalu-

ating the velocity torque profiles shows a pattern like that on the total torque line.

Figure 5.6 shows the results of increased damping ratio on total torque, as compared

to total torque for C = 0.174 shown in Figure 5.4. Because damping is directly

related to velocity, any increase in the damping ratio will have a similar increase in

the magnitude of velocity related torque. In the case where the velocity terms are

noisy, increasing the damping will increase that noise. This is the reason velocity

filtering will be discussed later in the chapter.

5.4.2 Natural Frequency Variation of the natural frequency, w,' was done in

an attempt to create a better force to position torque balance. As mentioned earlier,

the ideal case has the force torque equally matching the position torque arising from

the error induced by the obstacle. The natural frequency term is comprised of the

square root of the stiffness K divided by the desired mass M. The approach to match

torques was accomplished by lowering the position gain. Varying this gain has the

effect of changing the natural frequency. Another approach is to choose a desired

natural frequency, and find the mass and stiffness combination that will satisfy that

condition. Figure 5.7 presents the torque profiles resulting from a natural frequency

of 07 radians per second. The point to remember is to evaluate these plots based

on the relative change in slope of the torque curves, not on the absolute torque

magnitudes. One of the reasons for this is that the desired result is to allow force
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induced torques to nullify the change in position torque due to the error generated

from the obstacle. For joint one this means the ideal total torque curve would be flat

even when encountering obstacles in that .,.,ýction. Another reason is that fixture

positioning can change the torque magnitude from run to run for the same parameter

set.

This exercise demonstrates that the force torque term has more dominance at

this frequency, than in the w = 18.52 case of Figure 5.4. However, the position

torque still dominates and causes the total torque slope to increase. Also apparent

is the high frequency 'noise' from the force torque. From this exercise, one sees that

varying the position gain, i.e. stiffness, does in fact act as a method to reduce the

position torque influence.

5.4.3 Mass Another approach to reducing the effect of position torque is sim-

ilar to the natural frequency approach. Because Hogan's law uses the inverse mass,

decreasing the mass term acts to increase the magnitude of the overall term. How-

ever, unlike changing the stiffness, in this case varying the mass term affects all of

the other torque terms in the controller, i.e. force, velocity, and position torques.

Thus, as the mass term is reduced, the torques for force, position, and velocity will

eacb increase in magnitude. Assuming a constant natural frequency, when mass

is reduced, the stiffness term must also be reduced to mantain that frequency. A

similar effect occurs with the damping torque. On the other hand, decreasing the

mass will directly increase the force torque magnitude. The result is an increase in

the force torque, with no relative increase in position torque. Figure 5.8 represents

torques created by r,'ucing the desired mass from 34.28 kg to 5.0 kg. For joints

one and two, changes in the position torque were nearly canceled by the correspond-

ing force torque. This verifies that this method is useful in tuning the manipulator

performance.
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5.5 Filters

The tuning effort pointed out the higher frequency oscillations and spikes that

originated in the force and velocity torques. Both of these terms have important

impact on system performance. Because the force portion of impedance is associated

with stability, the desired forces and related torques should be as continuous and

smooth as possible. Velocity torque is important in two ways. First it relates to the

damping characteristics of the controller. Second, the friction compensation model

threshold is based on velocity. The sign of the friction torque is obtained from the

direction of joint velocity if its greater than the threshold. Otherwise the sign is

determined from the position torque.

The filter used for both the force and velocity was very simple: the slope between

the current and the previous point is calculated, and compared to a user selected

value. If the actual slope is greater than the selected value, the magnitude of the

current point is adjusted to meet the imposed slope requirement. Figure 5.9 shows

a run without the force filter applied. The force torque has the high frequency

oscillations, especially notable in the joints two and three curves. Figure 5.10 shows

the torque profile for the same conditions with the force filter applied. There is a

definite change in the torque curves due to the filter. However, the velocity torque

'noise' is still present in the total torque.

The velocity filter was applied to the joint space velocities. An example of the

velocity torque prior to and after filtering is in Figure 5.11. Figure 5.12 displays the

results of velocity filtering on the total torques. It can be seen from these plots, the

filter does remove the spikes that were present. This is important because a spike in

the torque profile can propagate throughout the entire manipulator and contribute

to instabilities.
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Joint One- Total Torque, Unfiltered Velocity
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5.6 Friction Compensation

Prior to the temporary fiY for joint one data corruption, it was observed that

the addition of friction compensation would cause the manipulator to go unstable

and enter into limit cycles. One such case is shown in Figure 5.13. The combination

of large torque spikes from joint one, and the cyclic switching of the friction torque

would combine to create the unstable behavior. After adding the joint one data

filter, those types of limit cycles were eliminated. With the force, velocity, and

joint one filters in place, an examination of the friction compensation model was

performed. Figure 5.14 shows the effect of including the coulomb/viscous friction

model described in Chapter Two. The heavy torque bands are due to coulomb

friction. These are caused by the direction switching that occurs in this friction

model. Comparing this figure to Figure 5.12 reveals that the torque from friction

compensation merely adds a torque band to the total torque curve. There is no

visual or graphical improvement shown with this compensation included. In fact,

from the mechanical view point, such oscillations in the gear train are not desirable.

Premature failure because of excessive cycling is possible. In an effort to create

a working friction model, the threshold value was changed. In addition, the actual

values for coulomb and viscous friction were varied. Neither of these efforts improved

the performance for friction compensation. Thus, further testing was performed

without friction compensation included.

5.7 Speed

Until now, the testing was done on a thirty second trajectory. This part of the

thesis briefly examines whether the impedance controller with simi!ar parameters

can accommodate faster motions. The data of Figure 5.15 represents a total time

of five seconds to traverse the same trajectory previously covered in thirty seconds.

Some re-tuning of the various parameters was required to create a combination that

would remain stable. This configuration used a 10 kg mass, a damping ratio of 0.5,
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and a 1: tural frequency of 18.52. Physically, the manipulator followed the side of

the slipway in essentially the same manner as previous runs, except six times faster.

Visually the performance was identical to the thirty second cases. The shape of the

curves in Figure 5.15 appear to be much different than the long runs, but this is

expected based on the shortened time frame. This portion of the research identifies

that the compliant controller can function well over a broad range of conditions

including variations in trajectory speeds.

5.8 Limitations

A final observation about the compliant controller capabilities is made by eval-

uating the data in Figure 5.16. At the 28 second point there is a large increase in

torque magnitudes. That point in the run was where the nozzle contacted the flat

portion of the slipway back wall. It was noted in Chapter Three that the mock-up

was slightly different in configuration than an actual slipway. This flat back wall

was the largest difference. With a discontinuous transition, or corner, between the

side wall and the receiver, the axis of the nozzle encountered a condition in which

the nozzle axis becomes perpendicular to the wall, but off-set in the y direction from

the receiver opening, i.e. stuck in a corner. The manipulator was unable to ac-

commodate this obstacle, therefore it remained in that position building up torques

until the trajectory time expired. This shows that this controller can not surmount

non-linear impedances, yet it will remain stable in that condition.

5.9 Summary

This chapter has demonstrated three DOF compliant refueling with impedarci.

control. Tuning, or varying the second order parameters revealed that this control

law car, and does function over a wide range of conditions. Filtering oi force and

,,elocity terms was used to create a smoother scenario in which to evaluate frictior,

compensation. Friction compensation schemes made little improvement ovc,2 th ,
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uncompensated, • = .174 case. Data was presented which indicates that impedance

control will provide compliance at much higher velocities. Finally, the linear surface

tracking limitations of the control law were exposed.
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VI Conclusions and Recommendations

6.1 Conclusions

Three degrees of freedom compliant motion has been proven and demonstrated

on the half-scale Universal Aerial Refueling Receptical Slipway Installation mock-

up. In addition, this research has provided the following contributions to AFIT

compliant motion research:

"* Tuning. Impedance parameters can be tuned to achieve desired performance

over a wide range of impedancc conditions

"• Filtering. Simple but effective filtering techniques improved the overall quality

of commanded torque. Both force and velocity were filtered.

"* Friction Compensation. The current friction model has been shown to provide

no performance improvement

The results of this thesis provide, in many ways, a capstone to the AFIT robotics

laboratory research in compliant motion. Achieving three DOF capability allows

for investigation of a wide range of assembly related tasks. Compliant control can

and should be applied in any peg-in-the-hole assembly tasks. Specifically, compliant

control should be used in future robotic refueling prototype efforts.

6.2 Recommendations

Often, research of this kind creates more questions than answers. This the-

sis is no exception. Perhaps the biggest cnestion remaining is how to improve or

smooth the compliant trajectory. The persistent stop-start motion problem is not

well posed. Until it is, attempts to compensate for the phenomenon will reach limited

success. Preliminary research with adaptive techniques suggests that adaptive fric-

tion comptnsat.on will provide improved performance over the friction model used.
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Additionally, interface forces and their effects may play a large role in creating or

impeding a smooth continuous constrained motion.

Another interesting aspect to consider is the need for additional compliant de-

grees of freedom. What benefits can be derived from a full six degree of freedom

manipulation task? Can active and passive compliance be integrated into the same

task and perform the refueling demonstration? What are the effects of even higher

velocity on the results provided here. That is, can compliant tasks be performed as

well at much larger velocity. The following is a summary of recommendations for

future research in compliant motion and some of the issues its study has raised:

"* resolve joint one data corruption

"* identify the nature of the stair-step motion

"• investigate using adaptive techniques to reduce or eliminate undesired behavior

"* increase to six, the compliant degrees of freedom for the same refueling task

"* create more precise ways to assure smooth velocity profiles.

"• perform the same test a higher velocities

"* perform the refueling demonstration at higher sample rates and velocities

"• implement a more rigid fixture which requires the entire compliant nature to

be handled by the manipulator

"* develop a more precise way to consistently repeat the experimental runs; i.e.,

upgrade to PUMA calibration routines.

The key to future compliant motion studies is to have clean accurate inputs and more

consistent test environment. By providing a repeatable laboratory environment, the

effect of slight modifications can be better correlated. Problems such as the joint one

data corruption, and PUMA calibration point variations act to cloud other issues

Puch as the jerky stair-siep motion.
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